2^2=x(6+x)

Simple and best practice solution for 2^2=x(6+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2^2=x(6+x) equation:



2^2=x(6+x)
We move all terms to the left:
2^2-(x(6+x))=0
We add all the numbers together, and all the variables
-(x(x+6))+2^2=0
We add all the numbers together, and all the variables
-(x(x+6))+4=0
We calculate terms in parentheses: -(x(x+6)), so:
x(x+6)
We multiply parentheses
x^2+6x
Back to the equation:
-(x^2+6x)
We get rid of parentheses
-x^2-6x+4=0
We add all the numbers together, and all the variables
-1x^2-6x+4=0
a = -1; b = -6; c = +4;
Δ = b2-4ac
Δ = -62-4·(-1)·4
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{13}}{2*-1}=\frac{6-2\sqrt{13}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{13}}{2*-1}=\frac{6+2\sqrt{13}}{-2} $

See similar equations:

| -19-76=20x-76 | | 6x=8+4 | | 8^2=x(12+x) | | 24.6+3a/4=12 | | 5(x-5=60 | | -12x=2x-7 | | 5y^2-33y=52=0 | | 3(x-1)=(3x)-3 | | 20x-50=10x-250 | | 1) 10n+2=7n+14 | | 1) 7n+5=5n+25 | | b2+7b=0 | | 8x+6+8=7x-46 | | 8-3x=2x+3 | | x^2+17/10x-2=0 | | 5y+32=4y-42 | | 3x^2+60x-10400=0 | | 6x-7=41+3(x+1) | | -(x+3)=0.8-10x | | 7=2x+23 | | 9(x+5)=-3 | | 3z/10+7=2 | | x/9+4=10 | | w5-15=18 | | 3u+8=29 | | (2x+3)/2=(7x-2)/3 | | x/3+9/4=-5x/6+15/2 | | 3^2x=9^x | | -2.7=4(a+3.2) | | |4w+5|=|4w+7| | | 4y-5(21)=4y-5(21) | | 13x+2-(x-3)=x-5-3(x+12) |

Equations solver categories